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Abstract : Silylated vinyloxiranes 1, substituted on the double bond, have been synthesized and reacted 
under very mild conditions in the presence of a catalytic amount of palladium (0). They rearrange into tx- 
silylated-13,7-unsaturated aldehydes 2, not only with complete chirality transfer but also with total 
retention of the double bond stereochemistry. © 1997 Published by Elsevier Science Ltd. 

We previously reported 1'2 a zerovalent palladium catalyzed rearrangement of vinyloxiranes 1 into highly 

functionalized t~-silylated-~,7-unsaturated aldehydes 2 (Scheme 1). 
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Scheme 1 

This 1,2-silicon migration proceeds under smooth conditions and yields stereoselectively versatile ambident 

compounds. As part of our study of this reaction, we checked how silylated vinyloxiranes, with a substituted 

double bond, are transformed via this palladium(0) catalysis. 

Vinylepoxides 1 are synthesized from epoxyaldehydes 3 (Scheme 2, Table 1) by a Horner-Wadsworth- 

Emmons reaction. In case of l a  and If, we used lithium chloride and an amine (DBU) as a mild olefination 

procedure which led easily to the (E)vinyloxirane.  3 In order to synthesize (Z)-et,l~-unsaturated esters l b  and le ,  

4 
methyl-bis(trifluoroethyl)phosphonoester was chosen as the Horner-Emmons reagent. Epoxyaldehydes 3 are 

prepared in five steps from commercially available propargylic alcohol. 5 They could be obtained either as a 

6 
racemic mixture or via a Sharpless enantiosetective epoxidation step. 

H" 
R 

3a : RI=R2=Ph R3=toBu 
3b : RI=R2=Me R3=t-Bu la-f 

Scheme 2 
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Table 1. Preparation of t~,l~-Unsaturated Vinyloxiranes. 

Epoxyaldehydes Conditions Yield (%) Products Z / E 

3a" M e J ~  ~' 'CO2M e 99 
MoO 

la "C02Me 

CF~CH~O,, A R "  ~ , 

3 =  b CF3CH20~III:~ "C02Me 60 t BU/'~'.A:'~'t OOMe 
O " H ~ - " ~  ,.rC 
j lb 

EtO~ - F~ R ~  ~ 

3 a  b EtO'~ol~ 42 t - B u " : ~ , ~  

lc Ph 

3a b Ci.Ph31 ~ 86 t. B U ~ H H ' ~ , , ~  

t ld , ~  

0 / 1  

17 /3  

1 / 9  

1 /1  

CF3CH20~A e ~  e 
M P, ]-I 2 / 1  d 3b ~ CF3CH20~II P~ "CO2Me (Z)-le= 54 d t_Bu ~ . , , . ~ r ~ O 2 M  O 

O (E)-lf= 27 
J le, f 

O2Me (Z)-le= 10 1 / 6.5 3b~ Me t 

MeO (E)-lf= 68 le, f "CO2Me 

a) ee = 85%, b) racemic mixture, c) ee = 98%, d) E and Z stereomers were separated on silica gel flash chromatography eluted by petroleum 
ether (98%) and ether (2%). i) : LiC1, DBU, CH3CN, r.t., 0.5h. j) : Crown-ether[18-C-6], KHMDS, THF, -78°C. k) : Nail, PhCH~, 105°C., 
0.5h. l) : C2Hs(CH3)2CONa, Phil, reflux, 0.5h. 

l a - f  rearranged in the presence of a catalytic amount of zerovalent palladium generated in situ from 

Pd(OAc)2 and P(iOPr) 3 or P(OPh) 7 in tetrahydrofuran at room temperature (Scheme 3, Table 2). Except in case 

of l a ,  we detected no trace of conjugated silylenolether 4, resulting from a 1,2 shift of silicon from carbon to 

oxygen. The absence of Brook 8 rearrangement in the case of le-f  can be rationnalized according to our previous 

study 5 of the influence of silicon substituents on the rearrangement products. 
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Scheme 3 
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Table 2. Rearrangement of Vinyloxiranes into t~-Silylated l],7-Unsaturated Aldehydes. 

Vinyloxiranes Conditions a 2a-f (Z / E) Yields (%) 

(E)-la A (E)-2a 63 ~ 

l b  (Z/E= 17 / 3) A 2b (Z/E = 17 / 3) 10 ~ 

lc(Z/E= 1 / 9 )  A 2c(Z/E = 1 / 9 )  90 

ld(Z/E= 1 / 1) A 2d(Z/E = 1 / 1) 86 

(Z) - le  B (Z)-2e 30 b 

(Z) - le  C (Z)-2e 76 

(E) - l f  C (E)-2f  27 

a ) A : 5% Pd(OAc) 2, 20%P(OiPr) 3. B : 20%Pd(OAc) 2, 80%P(Ofiar)3. C : 5%Pd(OAc) 2, 20%P(OPh) 3. b) unoptimized, c) 4 a  is obtained with 10% 
yield.  

When Z and E vinyloxiranes could not be separated, their mixtures (Table 2 : entries la-d)  were exposed to 

zerovalent palladium in catalytic amount and a mixture of Z and E aldehydes 2a-d  was isolated in an equal ratio 

of Z to E as the starting vinyloxirane mixture. 

When only one stereomer was transformed ( le - f )  9ab only one aldehyde (2e-f) 9c-d was obtained in the 

pure stereomeric form (Z)-2e from (Z)-le ,  and respectively (E)-2f from (E)-lf ,  with no trace of the other 

stereomer. Therefore we establish that the rearrangement of vinyloxiranes into tx-silylated-13,y-unsaturated 

aldehydes occurs with retention of the double bond configuration. 

These results indicate that silicon migration takes place before the syn-anti isomerization l°'ll of x-allyl 

palladium reaches the equilibrium state. According to former studies, we can suppose that the most stable form 

for the disubstituted x-allylic palladium complex [5], obtained from vinyloxirane (Z)- le ,  is the syn-syn isomer 

[6]. Our results stress that the equilibrium rate between [5] and [6] is slower than the 1,2 silicon shift (scheme 

4), leading to the aldehyde 2e. This explains that no trace of the (E)-2f stereomer could be isolated. 



5496 

t-Btr/S~ ~,. 'H /C t-Bu" [ _ ~ , , ( '  02Me t- n-~-~ 
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le L Q{J" ~-I L~/dL2 H L~O" ~-I (~)/dL H 

[5] : "syn - anti" [6] : "syn - syn" 

l fast 

2e t_BMu.M~r.M e 

0~, / ,~.  .?02Me 

Scheme 4 

In conclusion, our results lead to a better understanding of this unusual 1,2 silicon shift from carbon to 

carbon via a rt-allylic palladium complex. The rearrangement of vinyloxiranes substituted on the double bond, 

show total retention of the double bond configuration. These results make vinyloxiranes l e - f  and their 

rearranged aldehydes 2e-f, substituted with an electron-withdrawing ester group, powerful synthons for further 

stereoselective syntheses. 
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